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Università Ca’ Foscari Venezia - Italy

{srotabul,pelillo}@dsi.unive.it

⋆Institute for Computer Graphics and Vision

Graz University of Technology - Austria

{kontschieder,bischof}@icg.tugraz.at

Abstract

In this paper we introduce Structured Local Predictors

(SLP) – A new formulation that considers the image la-

belling problem from a structured learning point of view.

SLP are locally operating models, which provide a per-pixel

labelling by exploiting contextual relations, learned from

complex interactions between labels and a customizable in-

termediate representation of the image data. Our first key

contribution is to handle flexible configurations of pairwise

interactions between image pixels while allowing them to

be made arbitrarily dependent on the image data. More-

over, we pose the parameter learning process as a convex,

structured-learning problem, which can be efficiently solved

in a globally optimal way due to the introduction of a con-

tinuous, structured output space. Finally, we provide an in-

terface to our model by means of a quantization space, al-

lowing to define task-specific intermediate representations

for the input data. In our experiments we demonstrate the

broad applicability of our model for tasks like inpainting

and semantic labelling.

1. Introduction

In many computer vision problems, random field mod-

els are used to perform image labelling tasks, with the goal

of predicting labels for each pixel in a given input im-

age. Typical examples are foreground-background segmen-

tation [2, 21], semantic image labelling [22, 7, 10] or depth

image estimation [15]. With random field models, the joint

(or posterior) distribution of labels and input data can be

factorized into products of local interactions. Markov ran-

dom fields (MRF) provide a posterior label distribution by

combining a per-pixel likelihood function with a pairwise

consistency potential. Moreover, with the advent of con-

ditional random fields (CRF) [14], more elaborate terms

for modelling the smoothness costs and contextual relation-

ships between classes could be made dependent on the in-

put data. Such models are commonly solved by performing

maximum a posteriori (MAP) inference.

A simple CRF model is composed of unary and pair-

wise potentials, modeling local and neighboring relations,

respectively. While the unary or data term mostly uses

classifier outputs to model the local label distribution on

a per-pixel basis, the pairwise potential or smoothing term

enforces adjacent pixels to take on the same labels when

indicated. For the task of semantic image labelling, some

approaches introduced hierarchical layers or higher-order

potentials [11, 12, 8] defined over segments, for improv-

ing segmentation results. However, despite the rapid devel-

opments made for some computer vision tasks, many CRF

models still suffer from substantial limitations: The pair-

wise potentials are often restricted to have a simple, para-

metric form and need to obey a certain neighborhood struc-

ture. This hinders both, the capability of modelling long

range and more direct interactions with the image data.

Recently, a new graphical model named Decision Tree

Field (DTF) [19] was introduced to overcome some of the

above mentioned shortcomings. DTF combines and gener-

alizes random forests and random fields by using the struc-

ture of decision trees for defining interaction variables in the

potential functions of the model. Doing so enables to ex-

press all potentials in a non-parametric way. For modelling

pairwise or higher-order terms over larger and thus more

flexible neighborhoods, DTF uses decision trees trained on

respective, combinatorial combinations of their label sets.

Once the trees are trained, the model parameters can be ef-

ficiently learned by maximizing a convex surrogate likeli-

hood function using standard optimization tools. For infer-

ence, DTF uses Gibbs sampling in combination with simu-

lated annealing to heuristically approach the MAP solution.

In this work we propose a novel way to tackle the image

labelling task from a structured learning [23, 18] perspec-

tive, overcoming the aforementioned problems of simple

random field models, while providing a principled approach

of defining potential functions and their interactions, which

differs from [19]. To this end, we introduce Structured Lo-

cal Predictors (SLP), which are functions providing a label

prediction for each individual pixel by exploiting contextual
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information expressed in terms of both, labels of neighbor-

ing pixels and local appearance. Intuitively, each pixel in

our model can predict the label of neighboring pixels, based

on information like relative position, respective labels and

local image appearance. The final labelling is delivered by

maximizing the agreement between the label assignments

and these structured local predictions. One major advantage

of the resulting method is that both prediction and training

can be cast as convex optimization problems.

Differently from standard literature, our model works on

abstract image representations, which are obtained by so-

called quantization functions. A quantization function is an

application-dependent function that maps pixels to quanti-

zation classes, which summarize e.g. the local appearance,

shape, texture, etc. of the original image. For instance, ran-

dom decision trees, which are commonly used classifiers in

computer vision can be used as quantization functions by

considering their leaves as the quantization classes.

Using a quantization space as an intermediate represen-

tation provides several appealing properties: First, it can

be seen as a compressed representation of the image data

during training and testing. Moreover, it helps to control

the number of model parameters that substantially decide

whether a model is computationally tractable or not. In ad-

dition, the quantization function can be customized to spe-

cific problems and may integrate (partial) solutions from

several sources, e.g. the output of several classifier stages,

prior knowledge, etc. With the quantization function as

interface, we think that many computer vision problems

could potentially benefit from using our proposed approach.

Please note that the way we use quantization here should not

be confused with quantization in terms of image segmenta-

tion granularity, i.e. pixels or superpixels, and it should also

not be considered as a simple means of remapping samples

in a new feature space. To sum up, our structured learning

method possesses several advantages when used for the task

of image labelling:

• We can handle a large number of interactions among

variables which are not restricted to obey a fixed neigh-

borhood structure;

• Our approach operates on an intermediate represen-

tation (Quantization space) of the image data, allow-

ing to describe non-parametric interactions among the

variables in a customized way;

• Our model can be efficiently solved in a globally opti-

mal way for training and prediction using off-the-shelf

algorithms from convex optimization.

The rest of our paper is structured as follows. In Sec-

tion 2 we discuss related work before we introduce the ter-

minology and notation for our approach in Section 3. Sec-

tion 4 introduces the general concept of structured learning

and our definition of the auxiliary output space we are us-

ing to efficiently learn the parameters for our novel SLP, de-

scribed in 5. In Section 6 we explain our approach with the

help of several experiments before concluding in Section 7.

2. Related Work

Learning image-dependent potential functions for ran-

dom field models does not have a long history in com-

puter vision. Instead, as outlined also by [19], most ap-

proaches [1, 17] learn class-to-class energy tables in a direct

way without explicitly modelling dependence on the image

content.

In [9], the authors learned a multi-class logistic regres-

sion classifier to model dependencies on features like length

and orientation of region boundaries for pairwise terms in a

CRF. Recently, [5] proposed a method to adapt image pri-

ors according to the underlying low-level, local structures as

well as mid-level texture cues for the task of image restora-

tion. The approach in [16] proposes learning of structured

prediction models for the task of interactive image labelling.

However, despite the similarity in the name to our title, [16]

refers only to the structured dependencies among image la-

bels. In particular, they use a CRF where the pairwise po-

tentials are defined by scalar parameters for each joint state

of the corresponding labels, independent of the image input.

Our paper is most directly related and inspired by the re-

cent work of Nowozin et al. [19]. As already outlined, they

provide a way of expressing dependencies between image

data and potential functions in a graphical model by us-

ing decision trees [3]. However, their work is restricted to

model the image dependency in terms of decision trees, as

their energy functional depends on the tree structure for the

parameter learning step. Moreover, in our work we can use

decision trees as a special instance of a quantizer (as we also

demonstrate in one of our experiments in Section 6). In this

sense our model also generalizes decision trees since in the

most simple case, when we do not consider any neighbor-

hood relations with other pixels, our model obtains exactly

the single decision tree classification result (whereas using

multiple quantizations from several trees straightforwardly

generalizes to the result of random forests). Despite the

positive properties exhibited by decision trees (scalability

w.r.t. training data, efficient and parallel training), it is easy

to construct examples where the dependency on the image

data can be more appropriately expressed using alternative

representations (see quantization rule for the snake exam-

ple in 6). Therefore, we consider providing the quantization

space as powerful and flexible interface for interacting with

our model with potential impact on many labelling prob-

lems in computer vision.



3. Definitions and Notations

We model an image as a collection I = {(ui, φi)}
n
i=1 of

n pixels. For simplicity, we use I also to denote the set of

pixel indices of image I . Each pixel i ∈ I has a position

denoted by ui and an associated feature vector φi ∈ Φ. The

set of images with pixels taking values in a feature space

Φ is denoted by IΦ. Given two pixels i, j ∈ I , we write

∆ij for the displacement vector between i and j, i.e. ∆ij =
ui − uj ∈ Z

2.

A neighborhood system for an image I is a function as-

sociating each pixel in I with a set of neighbors. We denote

by Ni the set of pixels that are neighbors of pixel i.

Let L = {1, . . . , k} be a set of labels. A labelling for an

image I is a collection ℓ = {ℓi}i∈I assigning a label ℓi ∈ L

to each pixel i ∈ I . We denote by L the set of labellings.

A quantization function or simply quantizer is a function

q : IΦ → IQ that provides a compressed representation of

an image I by associating each pixel i ∈ I with an ele-

ment of the quantization space Q, which is a discrete finite

set. The elements of Q are called quantization classes. For

simplicity, we denote by qi ∈ Q the quantization class as-

sociated to pixel i ∈ I by means of quantizer q.

We denote by e the column vector of all 1s, and by e
k the

column vector having 1 in the kth position and 0 elsewhere.

Given a proposition P , we denote by 1P the truth value

of proposition P expressed as 1 (true), or 0 (false).

4. Structured Prediction

In structured learning theory, a structured predictor is

a function f : X → Y , mapping elements from an input

domain X to a structured output domain Y defined as

f(x) ∈ argmin
y∈Y

g(x, y) , (1)

for some auxiliary function g : X × Y → R. In many

computer vision problems the structured output space is dis-

crete, leading to a combinatorial optimization problem in

(1), which is typically intractable to solve. To overcome this

limitation, we introduce a different perspective for struc-

tured learning that includes the traditional one as a special

case, and allows us to define a structured predictor in terms

of an auxiliary function, working with an arbitrary output

space.

Structured prediction with auxiliary output space. Our

alternative definition of a structured predictor requires the

specification of an auxiliary output space, denoted by Ỹ ,

and an onto-mapping πỸ→Y which allows to map points

from the auxiliary output space to the original one. Ad-

ditionally, the latter mapping has to admit a left-inverse

function, denoted by πY→Ỹ , which is a function such that

πY→Ỹ ◦ πỸ→Y is the identity on Y . Given the new ingredi-

ents, a structured predictor becomes a function f : X → Y
defined as

f(x) ∈ πỸ→Y

(

argmin
ỹ∈Ỹ

h(x, ỹ)

)

, (2)

where h : X × Ỹ → R is the counterpart of g, working on

the new structured output space. Note that in (2), the output

of argmin is a set Ỹ ⊆ Ỹ , and we understand πỸ→Y(Ỹ ) =

{πỸ→Y(ỹ) : ỹ ∈ Ỹ }.
With this formulation we are free to select a continuous,

auxiliary output space and make use of powerful tools from

continuous optimization theory for solving the minimiza-

tion problem in (2). Additionally and as mentioned before,

if Ỹ = Y and πY→Y is the identity map on Y then (2) is

equivalent to (1), i.e. our new formulation in (2) becomes

the traditional one in (1).

5. Structured Local Predictors

In this section we introduce a structured prediction func-

tion for image labelling, which is defined according to (2).

Our model relies on an intermediate image abstraction de-

livered by a quantization function q : IΦ → IQ, accord-

ing to which pixels of an image are mapped to quantization

classes in Q. The input space of our structured prediction

function is thus given by IQ, while the output space is given

by the set of labellings L. As for the auxiliary output space,

denoted by L̃, we replace the discrete labels in L with |L|-
dimensional real vectors with components summing up to

1, i.e. elements of the set L̃ = {z ∈ R
|L| :

∑

j zj = 1}.
A labelling in the auxiliary output space is thus given by

y = {yi}i∈I , where yi ∈ L̃. The kth-component of yi is

denoted by yik. Labels from L are mapped to labels in L̃,

and vice versa, according to the following functions:

πL→L̃(k) = e
k , (3)

πL̃→L(z) ∈ argmax
k

zk . (4)

In words, given a discrete label ℓi ∈ L we map it to a vector

yi ∈ L̃ satisfying yik = 1(k=ℓi). In the opposite direction,

given a label yi ∈ L̃ we map it to an index of yi yielding the

maximum value. The functions πL→L̃ and πL̃→L, linking

the original structured output space and the auxiliary one,

can be obtained by applying pixel-wise (3) and (4). After

defining the mappings between original and auxiliary out-

put label spaces, we are now ready to introduce our new

predictor function.

A structured local predictor is a function hi(I,y,Θ)
providing a label from the auxiliary output space L̃ for a

pixel i of image I by exploiting contextual information in

terms of both, labels and the quantization classes of neigh-

boring pixels. Our structured prediction function f , defined





the per-pixel average neighborhood size times the number

of classes.

The additional parameters α(1,2) and γ are tuned in such

a way as to minimize the Hamming loss function on the

training data.

Inference. Inference on an image I takes place according

to (2) by solving a least-squares problem, which is convex

due to the linearity of (5) in the variables yi’s and the con-

vexity of L̃. As in the case of learning, a solution to the

optimization problem can be found efficiently, e.g. by using

LSQR [20] or LSMR [6]. The number of variables to op-

timize in this case is simply given by the number of pixels

times the number of classes.

6. Experiments

In this section we provide experimental results on differ-

ent datasets, demonstrating practicability and efficiency of

our approach. We consider [19] as the most related work

from literature and therefore reproduced two of their exper-

iments. First, we implemented their snake toy example, to

demonstrate the general concept of our method and its capa-

bility for learning conditional interactions. The second ex-

periment we reproduced from [19] aims at learning callig-

raphy properties for reconstruction/inpainting tasks in oc-

cluded regions of handwritten Chinese characters. This ex-

periment shows that inpainting results can be considerably

improved when applying rules learned from conditional in-

teractions in the neighborhood. To further demonstrate the

practicability of our approach, we evaluate on the CamVid

dataset [4] for the task of semantic image labelling. This

dataset is especially challenging since it exhibits large vari-

ation and complex interactions among several object classes

in street scene images.

To demonstrate the flexibility of our proposed model,

we use different quantization functions in each experiment.

Please note that the design of proper quantization functions

can be customized to individual applications. Finally, we re-

port the used parameters as well as running times for train-

ing and prediction, when executing our non-optimized C++

implementation on a single core in a standard desktop com-

puter.

6.1. Snake Toy Example

The snake example illustrates that even very simple tasks

can only be solved in a satisfying way when conditional in-

teractions are learned. A snake consists of exactly ten pix-

els, sequentially arranged with connections only in a four-

neighbourhood. Each position in the snake is associated

with one label, starting from head (black) to tail (white)

as illustrated in Figure 2(b). During training and predic-

tion, only the color-coded quantizations as shown in Fig-

ure 2(a) are given, which encode the direction of the next

(a) Snake training sam-

ple.

(b) Snake ground truth

labelling

Figure 2. Snake experiment. A snake is a sequence of 10 pix-

els connected according to a 4-neighborhood system. Each pixel

is labelled with its index in the snake sequence (right). A train-

ing sample is a direction-based encoding of the snake (left), from

which we want to recover the original snake sequence.

RF Unary MRF DTF [19] SLP

Accuracy 90.3 90.9 91.9 99.4 100

Accuracy (tail) 100 100 100 100 100

Accuracy (mid) 28 28 38 95 100

Table 1. Results obtained on the snake experiment.

label. More specifically, red means go up, yellow means go

right, blue means go left and green means go down. When

the quantization directs to a background pixel (cyan), the

end of the snake is reached.

Clearly, the use of unary classifiers alone would be in-

sufficient to infer the correct labelling as there is only lit-

tle local evidence in the input images. However, when the

quantization rules can be recovered as conditional interac-

tions from training data, inference can reconstruct each la-

belling by propagating the respective information from tail

to head.

For this experiment we impose a 1-neighborhood in

the pixel itself (represented as ·) for class-independent in-

teractions, and a 4-neighborhood (↑, ←, →, ↓) for the

class-dependent ones. The label space is given by L =
{0, . . . , 10}, where label 0 corresponds to the background

and labels 1−10 identify the snake sequence. We adopt the

following values for our additional parameters: α = 0.5,

γ = 1, and λ = 0.

In Table 1 we report the results obtained on a test set of

100 snakes. As we can see, we achieve a perfect reconstruc-

tion of the snakes with a full score of 100%, outperforming

all competing approaches among which we find unary clas-

sifiers, MRF and the recent DTF [19]. Interestingly, our

training procedure is based on just 20 training samples as

opposed to the 200 ones used in [19]. The reason why such

a small training set is enough for our approach to learn the

snake rules, can be evinced by estimating the quantity of

information, expressed as pairs quantization class / ground-

truth label, that is effectively observed in the training sam-
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Figure 3. Missing information quantity (quantization-label co-

occurrence) as a function of training examples in a repeated

Bernoulli process (1000 repetitions).

ples. Specifically, Figure 3 shows the empirically estimated

probability of information loss in the training set, i.e. the

probability of not observing all admissible combinations of

quantization class and ground-truth label in the training set,

as a function of the training set size (blue curve). Addi-

tionally, we plot the fraction of information lost, i.e. the

fraction of admissible combinations of quantization class

and ground-truth label not present in the training set, as a

function of the training set size (green curve). All statis-

tics are taken with respect to 1000 trials. As we can see,

with 20 training samples the probability of not gathering all

the information about the snakes is around 15%. The frac-

tion of missing information however is small enough for

our method to close the gap and achieve a perfect recon-

struction.

In Figure 4 we report the parameters Θ that have been

leaned by our approach. The table on the left reports the

class-dependent parameters. The first column shows pairs

of quantization class and displacement vector, while the

second one shows the entries of the corresponding |L|2-

matrix W (qj ,∆ij). The table on the right reports the class-

independent parameters. Similarly, the first column shows

pairs of quantization class and displacement vector, while

the second one shows the entries of the corresponding |L|-
vector w(qj ,∆ij).

In order to decode the meaning of the learnt parameters,

we focus on labelling a pixel i based on the observations

deriving from a pixel j, of which i is a neighbor. Starting

from the class-independent prediction in the right table first

row, we can see that if i has a color not corresponding to

background, then the label of pixel i is pushed towards 1
and away from 0 (background), whereas if pixel i is cyan

(second row) then no action is taken. More interesting is

what happens once the class-dependent parameters in the

left table are taken into account. The first row shows all

cases where the displacement vector ∆ij follows the un-

derlying direction encoded in the color qj of pixel j, e.g.

color blue corresponds to the snake developing in the direc-
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Figure 4. Parameters Θ = (W,w) learned for the snakes exper-

iments using 20 training samples. For a detailed description see

Section 6.1. The color bar indicates the values of the matrix/vector

entries.

tion ←. As we can see, the learned matrix of parameters

W (qj ,∆ij) in these cases coincides. Intuitively, the matrix

shows that in these cases whenever the class label of pixel

j is in the range k ∈ {1, . . . , 9}, pixel i is pushed towards

label k + 1 and away from label 1, which was the “default”

choice of the class-independent predictions. This rule can

be clearly evinced from the brown and blue entries of the

matrix. If pixel j has label 10, then i should take back-

ground (i.e. label 0; see last column of the matrix) since a

snake terminates in a background pixel by definition, and

if j is background then no information is propagated to the

neighbors (first column of the matrix). In the second row,

we see all cases of displacement vectors not correspond-

ing to the color’s direction. In this case, if j is background

no information is propagated, whereas if j takes any other

label, then i is pushed towards the background label 0. Fi-

nally, the last row shows that if the color of pixel j is cyan,

i.e. background, and the label of pixel j is background, then

pixel i is pushed to take label 0 as well, otherwise no action

is taken. The combination of those rules in the structured

local prediction (6) allows our method to perfectly recon-

struct any given test snake image.

6.2. KAIST Hanja2 Dataset

In our second experiment we demonstrate that the incor-

poration of neighborhood information can be used to learn

calligraphy properties for reconstructing occluded regions

in handwritten, Chinese characters of the KAIST Hanja2

Dataset1. We used the original training (300 images) and

testing data (100 images) of [19] and their respective, ran-

domly generated occlusions for both, the small and large

occlusion datasets. For quantization we use a single, ran-

1http://ai.kaist.ac.kr/Resource/dbase/Hanja/

HanjaDB2.htm



Single Decision Tree MRF DTF SLP

Tree (Avg) Ensemble (RF) [19]

68.52 74.95 75.18 76.01 78.07

Table 2. Reconstruction results for KAIST Hanja2 dataset in [%]

for occluded regions.

domly trained decision tree with a maximum depth of 10

and simply take the resulting leaf node indices as quanti-

zation classes. In such a way, the quantization space has

a maximum cardinality of 210 = 1024. During training

of the decision tree, we used 2000 iterations per node and

simple pixel difference tests on the gray values, which were

allowed to look at most 80 pixels away. As class-dependent

parameters for our model we used a densely connected 8-

neighborhood and additionally a sparse set of neighbors at

{(−3, 0), (3, 0), (0,−3), (0, 3)}. The class-independent lo-

cation was fixed to the center position of the pixel.

In Table 2, we compare to the classification results for

the small-occlusion dataset when using only our single,

baseline decision tree, a tree ensemble of 10 trees and the

MRF and DTF results taken from [19]. Our method boosts

the initial classification score of the single decision tree

by almost 10%, outperforming sophisticated methods like

MRF and DTF. Additionally our method is extremely fast,

i.e. once the decision tree is trained (≈ 30s), our model

takes only 3.2s including training on all available training

samples and evaluation on the entire test set while DTF re-

ports a total training time of approximately one hour.

In Figure 5, we show some qualitative results obtained

on the large occlusion dataset and compare to plain deci-

sion tree classification results. Here, we trained our model

on all densely connected neighbors in a 5 × 5 neighbor-

hood and learned parameters for 24 pixel pairs, while fix-

ing the class-independent parameter to the center position

of the respective pixel. Please note how our approach pro-

duces meaningful reconstructions by automatically learning

typical calligraphic strokes from the data while vanilla clas-

sification with the single tree (expectedly) produces noisy

inpainting results.

6.3. Semantic Segmentation on CamVid Dataset

In this experiment we demonstrate the performance of

our model when using it for the task of semantic image la-

belling on the challenging CamVid dataset [4]. This dataset

is a collection of several driving scene videos, where a sub-

set of 711 images is almost entirely annotated into 32 ob-

ject categories. The standard protocol for evaluating on this

dataset considers 11 categories [4, 13] and a split into 367

images for training and 233 for testing. As our baseline

we used the unary classifications obtained from the pub-

licly available automatic labelling environment (ALE) soft-

Figure 5. Qualitative reconstruction results on large occlusion ar-

eas of KAIST Hanja DB2 dataset. Each column illustrates one

example, where first row shows ground truth, second row the oc-

clusion area, third row the single decision tree reconstruction and

final row our obtained results.

ware [13]2, rescaling the images by a factor of three and

intentionally ignoring additional segmentations and object

detector information. Assigning the class label with maxi-

mum probability yields a considerable global classification

score of 77.39%, which we use as a baseline for our ap-

proach.

We designed a simple quantization function

that interrelates gradient direction and magnitude

strength of the corresponding intensity images with

the chosen unary class label. In particular, we

were binning the magnitude strength into intervals

{[0], (0, 0.05], (0.05, 0.15], (0.15, 0.25], (0.25, 1]} and

the angles into 8 uniform partitions over 2π, resulting

in maximally (5 ∗ 8 ∗ 11) = 440 quantization classes.

We investigated several configurations for the class-

dependent neighborhood settings for this experiment but

obtained the best results by selecting a densely connected

8-neighborhood with an additional, small and sparse set of

neighbors at {(−3, 0), (3, 0), (0,−3), (0, 3)} while fixing

the class-independent location to the center position. Train-

ing our model takes approximately 2.5 hours, using 20%

of the available training data while prediction takes several

seconds per image. In Figure 6 we show the comparison of

classification scores on a per-image basis for the Day-Scene

test data (171 images). On average, we improve the results

by 4.77% per test image. Considering the whole dataset,

i.e. including also the Dusk Scene (62 images), we improve

2http://cms.brookes.ac.uk/staff/PhilipTorr/ale.

htm
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Figure 6. Classification scores on Day-Test scene of CamVid dataset (171 images) for used baseline (blue) and our obtained result (red).

the global pixel accuracy scores to 81.50% (+4.11%).

Our score is slightly lower compared to 83.80% reported

in [13], however, we are neither using a hierarchical model

nor additional object detector information.

7. Conclusions

In this work we have presented Structured Local Pre-

dictors (SLP), i.e. a novel model that is applicable to im-

age labelling problems. SLP are functions that provide la-

bels for a pixel in an image by exploiting contextual in-

formation from labels and so-called quantization classes.

The context is defined using flexibly configurable, (pair-

wise) neighborhood relations. We cast the parameter learn-

ing process into a structured-learning problem, which can

be efficiently solved due to the introduction of an auxiliary

continuous, structured output space. Moreover, our model

is convex in training and prediction which guarantees to

find the global solution by employing efficient off-the-shelf

algorithms from convex optimization. Another core con-

tribution of our model is to allow interaction via custom-

made quantizer functions, i.e. discrete intermediate repre-

sentations of the image data which can be designed in a

task-specific manner. In our experiments we demonstrated

broad applicability on computer vision tasks like inpainting

and semantic labelling, obtaining competitive results when

compared to state-of-the-art labelling approaches.
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